Harvesting question-answer (QA) pairs from customer service chatlog in the wild is an efficient way to enrich the knowledge base for customer service chatbots in the cold start or continuous integration scenarios. Prior work attempts to obtain 1-to-1 QA pairs from growing customer service chatlog, which fails to integrate the incomplete utterances from the dialog context for composite QA retrieval. In this paper, we propose N-to-N QA extraction task in which the derived questions and corresponding answers might be separated across different utterances. We introduce a suite of generative/discriminative tagging based methods with end-to-end and two-stage variants that perform well on 5 customer service datasets and for the first time setup a benchmark for N-to-N DialogQAE with utterance and session level evaluation metrics. With a deep dive into extracted QA pairs, we find that the relations between and inside the QA pairs can be indicators to analyze the dialogue structure, e.g. information seeking, clarification, barge-in and elaboration. We also show that the proposed models can adapt to different domains and languages, and reduce the labor cost of knowledge accumulation in the real-world product dialogue platform.
translated by 谷歌翻译
Recent years have witnessed the tremendous progress of 3D GANs for generating view-consistent radiance fields with photo-realism. Yet, high-quality generation of human radiance fields remains challenging, partially due to the limited human-related priors adopted in existing methods. We present HumanGen, a novel 3D human generation scheme with detailed geometry and $\text{360}^{\circ}$ realistic free-view rendering. It explicitly marries the 3D human generation with various priors from the 2D generator and 3D reconstructor of humans through the design of "anchor image". We introduce a hybrid feature representation using the anchor image to bridge the latent space of HumanGen with the existing 2D generator. We then adopt a pronged design to disentangle the generation of geometry and appearance. With the aid of the anchor image, we adapt a 3D reconstructor for fine-grained details synthesis and propose a two-stage blending scheme to boost appearance generation. Extensive experiments demonstrate our effectiveness for state-of-the-art 3D human generation regarding geometry details, texture quality, and free-view performance. Notably, HumanGen can also incorporate various off-the-shelf 2D latent editing methods, seamlessly lifting them into 3D.
translated by 谷歌翻译
The security of artificial intelligence (AI) is an important research area towards safe, reliable, and trustworthy AI systems. To accelerate the research on AI security, the Artificial Intelligence Security Competition (AISC) was organized by the Zhongguancun Laboratory, China Industrial Control Systems Cyber Emergency Response Team, Institute for Artificial Intelligence, Tsinghua University, and RealAI as part of the Zhongguancun International Frontier Technology Innovation Competition (https://www.zgc-aisc.com/en). The competition consists of three tracks, including Deepfake Security Competition, Autonomous Driving Security Competition, and Face Recognition Security Competition. This report will introduce the competition rules of these three tracks and the solutions of top-ranking teams in each track.
translated by 谷歌翻译
Fully supervised salient object detection (SOD) has made considerable progress based on expensive and time-consuming data with pixel-wise annotations. Recently, to relieve the labeling burden while maintaining performance, some scribble-based SOD methods have been proposed. However, learning precise boundary details from scribble annotations that lack edge information is still difficult. In this paper, we propose to learn precise boundaries from our designed synthetic images and labels without introducing any extra auxiliary data. The synthetic image creates boundary information by inserting synthetic concave regions that simulate the real concave regions of salient objects. Furthermore, we propose a novel self-consistent framework that consists of a global integral branch (GIB) and a boundary-aware branch (BAB) to train a saliency detector. GIB aims to identify integral salient objects, whose input is the original image. BAB aims to help predict accurate boundaries, whose input is the synthetic image. These two branches are connected through a self-consistent loss to guide the saliency detector to predict precise boundaries while identifying salient objects. Experimental results on five benchmarks demonstrate that our method outperforms the state-of-the-art weakly supervised SOD methods and further narrows the gap with the fully supervised methods.
translated by 谷歌翻译
Real-time semantic segmentation has played an important role in intelligent vehicle scenarios. Recently, numerous networks have incorporated information from multi-size receptive fields to facilitate feature extraction in real-time semantic segmentation tasks. However, these methods preferentially adopt massive receptive fields to elicit more contextual information, which may result in inefficient feature extraction. We believe that the elaborated receptive fields are crucial, considering the demand for efficient feature extraction in real-time tasks. Therefore, we propose an effective and efficient architecture termed Dilation-wise Residual segmentation (DWRSeg), which possesses different sets of receptive field sizes within different stages. The architecture involves (i) a Dilation-wise Residual (DWR) module for extracting features based on different scales of receptive fields in the high level of the network; (ii) a Simple Inverted Residual (SIR) module that uses an inverted bottleneck structure to extract features from the low stage; and (iii) a simple fully convolutional network (FCN)-like decoder for aggregating multiscale feature maps to generate the prediction. Extensive experiments on the Cityscapes and CamVid datasets demonstrate the effectiveness of our method by achieving a state-of-the-art trade-off between accuracy and inference speed, in addition to being lighter weight. Without using pretraining or resorting to any training trick, we achieve 72.7% mIoU on the Cityscapes test set at a speed of 319.5 FPS on one NVIDIA GeForce GTX 1080 Ti card, which is significantly faster than existing methods. The code and trained models are publicly available.
translated by 谷歌翻译
We present HashEncoding, a novel autoencoding architecture that leverages a non-parametric multiscale coordinate hash function to facilitate a per-pixel decoder without convolutions. By leveraging the space-folding behaviour of hashing functions, HashEncoding allows for an inherently multiscale embedding space that remains much smaller than the original image. As a result, the decoder requires very few parameters compared with decoders in traditional autoencoders, approaching a non-parametric reconstruction of the original image and allowing for greater generalizability. Finally, by allowing backpropagation directly to the coordinate space, we show that HashEncoding can be exploited for geometric tasks such as optical flow.
translated by 谷歌翻译
Perceiving and manipulating objects in a generalizable way has been actively studied by the computer vision and robotics communities, where cross-category generalizable manipulation skills are highly desired yet underexplored. In this work, we propose to learn such generalizable perception and manipulation via Generalizable and Actionable Parts (GAParts). By identifying and defining 9 GAPart classes (e.g. buttons, handles, etc), we show that our part-centric approach allows our method to learn object perception and manipulation skills from seen object categories and directly generalize to unseen categories. Following the GAPart definition, we construct a large-scale part-centric interactive dataset, GAPartNet, where rich, part-level annotations (semantics, poses) are provided for 1166 objects and 8489 part instances. Based on GAPartNet, we investigate three cross-category tasks: part segmentation, part pose estimation, and part-based object manipulation. Given the large domain gaps between seen and unseen object categories, we propose a strong 3D segmentation method from the perspective of domain generalization by integrating adversarial learning techniques. Our method outperforms all existing methods by a large margin, no matter on seen or unseen categories. Furthermore, with part segmentation and pose estimation results, we leverage the GAPart pose definition to design part-based manipulation heuristics that can generalize well to unseen object categories in both simulation and real world. The dataset and code will be released.
translated by 谷歌翻译
开放设定的半监督学习(OSSL)引起了人们日益增长的兴趣,该学习调查了一个更实用的情况,在该情况下,仅在未标记的数据中包含了分布式(OOD)样本。现有的OSSL方法(例如OpenMatch)学习一个OOD检测器以识别离群值,该检测器通常会更新所有模态参数(即完整的微调),以从标记的数据传播类信息到未标记的数据。当前,已经开发了及时的学习来弥合预训练和微调之间的差距,这在几个下游任务中显示出较高的计算效率。在本文中,我们提出了一个迅速驱动的有效OSSL框架,称为OpenPrompt,该框架可以将类别的类信息传播到标记到未标记数据的类信息,只有少数可训练的参数。我们提出了一种迅速驱动的关节空间学习机制来检测OOD数据,通过在未标记的数据中最大化ID和OOD样本之间的分布差距,从而使我们的方法可以以新的方式检测到异常值。三个公共数据集的实验结果表明,OpenPrompt优于不到1%可训练参数的最先进方法。更重要的是,OpenPrompt在CIFAR10上完全监督模型的AUROC检测方面取得了4%的改善。
translated by 谷歌翻译
自动化技术(例如人工智能(AI)和机器人技术)的快速进步构成了越来越多的职业自动化风险,可能会对劳动力市场产生重大影响。最近的社会经济研究表明,接下来的十年中,将近50%的职业处于自动化的高风险。但是,缺乏颗粒状数据和经验知情的模型限制了这些研究的准确性,并使预测哪些工作将是自动化的。在本文中,我们通过在自动化和非自动化职业之间执行分类任务来研究职业的自动化风险。可用信息是由标准职业分类(SOC)分类的910个职业的任务声明,技能和互动。要充分利用此信息,我们提出了一个基于图的半监督分类方法,名为\ textbf {a} utomated \ textbf {o} ccupation \ textbf {c}基于\ textbf {g} rassification \ textbf {n} etworks(\ textbf {aoc-gcn})识别职业的自动化风险。该模型集成了一个异质图,以捕获职业的本地和全球环境。结果表明,我们提出的方法通过考虑职业的内部特征及其外部互动的信息来优于基线模型。这项研究可以帮助决策者在进入就业市场之前确定潜在的自动化职业并支持个人的决策。
translated by 谷歌翻译
Video-Text检索(VTR)是多模式理解的一项有吸引力但具有挑战性的任务,该任务旨在在给定查询(视频)的情况下搜索相关的视频(文本)。现有方法通常采用完全异构的视觉文本信息来对齐视频和文本,同时缺乏对这两种模式中均匀的高级语义信息的认识。为了填补这一差距,在这项工作中,我们提出了一个新颖的视觉语言对准模型,名为VTR Hise,该模型通过合并显式高级语义来改善跨模式的表示。首先,我们探讨了显式高级语义的层次结构属性,并将其进一步分为两个级别,即离散的语义和整体语义。具体来说,对于视觉分支,我们利用了现成的语义实体预测器来生成离散的高级语义。同时,采用训练有素的视频字幕模型来输出整体高级语义。至于文本方式,我们将文本分为三个部分,包括发生,动作和实体。特别是,这种情况对应于整体高级语义,同时动作和实体代表离散的语义。然后,利用不同的图推理技术来促进整体和离散的高级语义之间的相互作用。广泛的实验表明,借助明确的高级语义,我们的方法在包括MSR-VTT,MSVD和DIDEMO在内的三个基准数据集上实现了优于最先进方法的卓越性能。
translated by 谷歌翻译